The sodium-potassium pump is an information processing element in brain computation
نویسنده
چکیده
Brain neurons can transmit signals using a flow of Na+ and K+ ions, which produce an electrical spike called an action potential (AP) (Hodgkin and Huxley, 1952). After an AP, the Na+/K+ pump resets the arrangement of Na+ and K+ ions back to their original positions so that the neuron is then ready to relay another AP when it is called upon to do so (Glitsch, 2001). So, the Na+/K+ pump has a “housekeeping” role rather than a direct role in brain signaling. This is the long-held, entrenched viewpoint. However, novel research upon cerebellar Purkinje neurons suggests that the Na+/K+ pump may have a direct role in brain coding and computation (Forrest, 2008, 2014a,b; Forrest et al., 2009, 2012). This research was conducted in 2006–2007, and presented in a 2008 Ph.D. thesis (Forrest, 2008), but has only been published relatively recently. In the intervening period it was serially rejected by reviewers and journals that were uncomfortable with this re-appraisal of Na+/K+ pump function. Purkinje neurons are found in the cerebellum, responsible for motor control (Ito, 1984). The Na+/K+ pump uses the energy of one ATP molecule to exchange three intracellular Na+ ions for two extracellular K+ ions (Glitsch, 2001). Thus, the pump is electrogenic, extruding one net charge per cycle to hyperpolarize the membrane potential. In vitro, the Na+/K+ pump has been shown to control and set the intrinsic activity mode of Purkinje neurons (Forrest, 2008, 2014a; Forrest et al., 2009, 2012). It dictates whether the Purkinje neuron is quiescent or spontaneously firing in a continuous tonic, continuous burst, bimodal (tonic and quiescent), trimodal (tonic, burst, quiescent), or bimodal (burst and quiescent) repeat pattern. In the bimodal and trimodal repeat patterns, the Na+/K+ pump sets the length of each constituent mode. So, at the foundation of the Purkinje cell’s intrinsic multimodality, there is the working of just a single molecular species: the Na+/K+ pump. Numerical modeling of experimental data suggests that, in vivo, the Na+/K+ pump produces long quiescent punctuations (>>1 s) to Purkinje neuron firing (Forrest, 2014a). The Na+/K+ pump is an enzyme and its activity is dependent on the concentration of its substrates: intracellular Na+ and extracellular K+ (Glitsch, 2001). Na+ flows into and accumulates in the Purkinje cell during firing; Forrest’s numerical model proposes that intracellular Na+ concentration is a memory element, which records firing history (Forrest, 2014a). Furthermore, that the Na+/K+ pump “reads” this memory setting to dictate the timing and duration of long quiescent periods. To speculate, these long quiescent periods, on the scale of seconds and minutes, may be computationally advantageous. By conferring an access to longer time scales, they may permit storage and short-term processing of sensory information in the cerebellar cortex. To elaborate, they may permit different dynamical states to be sustained in the cerebellar cortex for extended periods. Each of these states is associated with a specific configuration of firing and quiescent states in different Purkinje cells. These network states could store information and perform computations. So, these network computations sit upon the proposed intracellular Na+ ion computation, mediated by the Na+/K+ pump, which dictates the activity state of individual Purkinje neurons (firing or quiescent). Forrest terms this hypothesis: “ion to network” computation (Forrest, 2014a). There could be further layers of control and regulation: the Na+/K+ pump is a receptor for the endo-ouabain signaling molecule (Xie and Cai, 2003) and Na+/K+ pump activity might be modulated by intracellular signaling cascades (Therien and Blostein, 2000; Bagrov and Shapiro, 2008). Relevantly, a mutation in the Na+/K+ pump causes rapid onset dystonia parkinsonism, which has symptoms to indicate that it is a pathology of cerebellar computation (Cannon, 2004; de Carvalho et al., 2004). Furthermore, an ouabain block of Na+/K+ pumps in the cerebellum of a live mouse results in it displaying movement disorders: ataxia and dystonia (Calderon et al., 2011). In recent times, other groups have shown the Na+/K+ pump to be a computational element in other neuron types, in other systems. For example, the Na+/K+ pump produces an afterhyperpolarization (AHP) to each burst in the motor neurons of Drosophilia larvae; AHP amplitude is dependent on the number of spikes in the burst (Glanzman, 2010; Pulver and Griffith, 2010). So the Na+/K+ pump generated AHP acts as a spike counter and is a form of short-term memory. Locomotion in Xenopus tadpoles, as in vertebrates generally, is produced by a central pattern generator (CPG) network
منابع مشابه
Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملAssociation of the whole blood potassium polymorphism with resistant to saline in two sheep breeds of different climates of Iran
Abstract The whole blood potassium concentration has shown the bimodal distribution in sheep, which has been classified into LK and HK types; HK allele is recessive to LK with a single gene inheritance. This polymorphism showed different behavior in different environment, which could be due to adaptation process. This research was conducted on the Zel and kermani breed research station, which...
متن کاملThe Principle of Relativity: From Ungar’s Gyrolanguage for Physics to Weaving Computation in Mathematics
This paper extends the scope of algebraic computation based on a non standard $times$ to the more basic case of a non standard $+$, where standard means associative and commutative. Two physically meaningful examples of a non standard $+$ are provided by the observation of motion in Special Relativity, from either outside (3D) or inside (2D or more), We revisit the ``gyro''-theory ...
متن کاملDiagnosis of brain tumor using image processing and determination of its type with RVM neural networks
Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...
متن کاملDetermination of Potassium Sorbate and Sodium Benzoate in "Doogh" by HPLC and Comparison with Spectrophotometry
There are various methods for the analysis of Potassium Sorbate and Sodium Benzoate in food products, but a rapid and reliable method for identification of these preservatives in Doogh (an Iranian traditional dairy drink) is a procedure, in which high performance liquid chromatography (HPLC) utilized and followed by UV diode array detection of the two preservatives. The aim of this case study w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014